Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors.

نویسندگان

  • Xinyan Li
  • Huiqiong Lin
  • Weiguo Zhang
  • Yan Zou
  • Jie Zhang
  • Xiaoyan Tang
  • Jian-Min Zhou
چکیده

Arabidopsis NONHOST1 (NHO1) is required for limiting the in planta growth of nonhost Pseudomonas bacteria but completely ineffective against the virulent bacterium Pseudomonas syringae pv. tomato DC3000. However, the molecular basis underlying this observation remains unknown. Here we show that NHO1 is transcriptionally activated by flagellin. The nonhost bacterium P. syringae pv. tabaci lacking flagellin is unable to induce NHO1, multiplies much better than does the wild-type bacterium, and causes disease symptoms on Arabidopsis. DC3000 also possesses flagellin that is potent in NHO1 induction, but this induction is rapidly suppressed by DC3000 in a type III secretion system-dependent manner. Direct expression of DC3000 effectors in protoplasts indicated that at least nine effectors, HopS1, HopAI1, HopAF1, HopT1-1, HopT1-2, HopAA1-1, HopF2, HopC1, and AvrPto, are capable of suppressing the flagellin-induced NHO1 expression. One of the effectors, HopAI1, is conserved in both animal and plant bacteria. When expressed in transgenic Arabidopsis plants, HopAI1 promotes growth of the nonpathogenic hrpL- mutant bacteria. In addition, the purified phytotoxin coronatine, a known virulence factor of P. syringae, suppresses the flagellin-induced NHO1 transcription. These results demonstrate that flagellin-induced defenses play an important role in nonhost resistance. A remarkable number of DC3000 virulence factors act in the plant cell by suppressing the species level defenses, and that contributes to the specialization of DC3000 on Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effector-triggered and pathogen-associated molecular pattern-triggered immunity differentially contribute to basal resistance to Pseudomonas syringae.

Pathogens induce pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants. PAMPs are microbial molecules recognized by host plants as nonself signals, whereas pathogen effectors are evolved to aid in parasitism but are sometimes recognized by specific intracellular resistance proteins. In the absence of detectable ETI determining clas...

متن کامل

Specific Bacterial Suppressors of MAMP Signaling Upstream of MAPKKK in Arabidopsis Innate Immunity

Plants and animals possess innate immune systems to prevent infections and are effectively "nonhosts" for most potential pathogens. The molecular mechanisms underlying nonhost immunity in plants remain obscure. In Arabidopsis, nonhost/nonpathogenic Pseudomonas syringae sustains but pathogenic P. syringae suppresses early MAMP (microbe-associated molecular pattern) marker-gene activation. We per...

متن کامل

The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity.

The Pseudomonas syringae type III protein secretion system (T3SS) and the type III effectors it injects into plant cells are required for plant pathogenicity and the ability to elicit a hypersensitive response (HR). The HR is a programmed cell death that is associated with effector-triggered immunity (ETI). A primary function of P. syringae type III effectors appears to be the suppression of ET...

متن کامل

NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species

Chloroplasts are cytoplasmic organelles for photosynthesis in eukaryotic cells. In addition, recent studies have shown that chloroplasts have a critical role in plant innate immunity against invading pathogens. Hydrogen peroxide is a toxic by-product from photosynthesis, which also functions as a signaling compound in plant innate immunity. Therefore, it is important to regulate the level of hy...

متن کامل

Bacterial effectors target the common signaling partner BAK1 to disrupt multiple MAMP receptor-signaling complexes and impede plant immunity.

Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 36  شماره 

صفحات  -

تاریخ انتشار 2005